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Abstract: 
The integral equation theory is one of mathematical analysis's most 

important and useful branches. Integral equations occur in a variety of 

applications, often being obtained from a differential equation, the 

reason for doing this is that it may make a solution to the problem 

easier or sometimes, enable us to prove fundamental results on the 

existence and uniqueness of the solutions. On the other hand, 

fractional calculus plays an important role in our field of integral 

equations, and many physical problems can be transformed into 

integral equations with fractional order. The fractional integral 

equations have recently been applied in various areas of engineering, 

science, finance, applied mathematics, bioengineering and others. 

This paper presents the existence theorems of monotonic solutions for 

nonlinear functional integral equations by using the Darbo fixed point 

theorem associated with the Hausdorff measure of noncompactness  
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1.  INTRODUCTION 
The subject of nonlinear integral equations is considered an important branch of mathematics because it is used for 

solving many problems such as physics, and chemistry ( Cancés and B.Mennucci,1998). In this paper, we will use the 

technique of measures of non-compactness and Darbo fixed point theory to prove the existence theorem for a nonlinear 

integral equation in the spaces 𝐿1(𝑅+). Also, as applications we discuss the existence of solutions for some non-linear 

integral equations with fractional order, which extends to some previous results in the literature ( J.Bana�́� and W. G. El-

Sayed,1980). 
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2- Notation and auxiliary facts 

Let  𝑅 be the field of real numbers, 𝑅+ be the interval [0,∞) and 𝐿1, be the space of lebsgue integrable functions on a 

measurable subset [0,∞) of  𝑅, with the standard norm. 

                                           

                                      ‖𝑥‖𝐿1(𝑅+) = ∫ |𝑥(𝑡)|
∞

0
𝑑𝑡  

One of the most important operator studied in nonlinear functional analysis is the so-called superposition operator (  

Adam loverro,2004) . 

 Assume that a function 𝑓(𝑡, 𝑥) =  𝑓 ∶ 𝑅+ × 𝑅 → 𝑅 satisfies Carath�́�odory conditions i.e. it is measurable in t for 

any 𝑥 ∈ 𝑅 and continuous in 𝑥 for almost all 𝑡 ∈ [0, ∞).  

Then to every function 𝑥(𝑡) being measurable on 𝐼 we may assign the function 

                                    (𝐹𝑥)(𝑡) =  𝑓(𝑡, 𝑥(𝑡)),       𝑡 ∈   [0, ∞). 

the operator 𝐹 in such a way is called the superposition operator generated by the function 𝑓. 

 We have the following theorem due to Appell and Zabrejko ( Adam Loverro,2004). 

 

Theorem 2.1: 

The superposition operator 𝐹 generated by the function 𝑓 maps continuously the space 𝐿1 𝑖𝑛𝑡𝑜 𝐿1if and only if 

 |𝑓(𝑡, 𝑥)| ≤ 𝑎1(𝑡) + 𝑏|𝑥|   ∀ 𝑡 ∈ 𝐼 and 𝑥 ∈ 𝑅 where 𝑎(𝑡) ∈ 𝐿1  and 𝑏 ≥ 0. 

Next, we will mention a desired theorem concerning the compactness in measure of a subset 𝑋  Of  𝐿1(𝑅+) (Bana�́� and 

W. G. El-Sayed, 1993). 

 

Theorem 2.2: 

Let X be an abounded sub-set of 𝐿1(0, ∞] consisting of functions which are almost everywhere nondecreasing (or 

nonincreasing) on the interval [0,∞). Then X is compact in measure. 

Furthermore, we recall a few facts about the convolution operator (Rudin, W.,1966) . 

Let 𝑘 ∈  𝐿1(𝑅) be a given function. Then for any function 𝑥 ∈ 𝐿1, the integral 

                                    (𝐾𝑥)(𝑡)  =  ∫ 𝑘(𝑡 −  𝑠)
∞

0
𝑥(𝑠) 𝑑𝑠 , 

exists for almost every 𝑡 ∈  𝑅+.  Moreover, the function (𝐾𝑥)(𝑡) belongs to the space 𝐿1. Thus 𝐾 is a linear operator 

which maps the space 𝐿1 into 𝐿1  and 𝐾 is also bounded since 

 ‖𝐾‖𝐿1(𝑅) ≤ ‖𝐾‖𝐿1(𝑅)𝐿1(𝑅)‖𝑥‖, for every 𝑥 ∈ 𝐿1; so, it will be continuous. 

 Hence the norm ‖𝐾‖ of the convolution operator is majored by  ‖𝐾‖𝐿1(𝑅).                                                  

In the sequel, we have the following theorem due to (Krzyz, 1952). 

 

Theorem 2.3: 

 Assume that  𝑘(𝑡, 𝑠) = 𝑘: 𝑅+
2 → 𝑅  is measurable on 𝑅+ such that the integral operator, 

                                    (𝐾𝑥)(𝑡) = ∫ 𝑘(𝑡, 𝑠)𝑥(𝑠)𝑑𝑠 ,       𝑡 ≥ 0
∞

0
  , 

 maps  𝐿1 into itself the K transforms the set of nonincreasing functions from 𝐿1 into itself if and only if for any 𝐴 > 0, 

the following implication is true. 

                                  𝑡1 < 𝑡2 → ∫ 𝑘
𝐴

0
(𝑡1, 𝑠)𝑑𝑠 ≥ ∫ 𝑘

𝐴

0
(𝑡2, 𝑠)𝑑𝑠.  

In the case of space 𝐿1(0,1) we will use the following corollary 

 

Corollary 2.1: 

Let 𝑘𝑖: (0,1)2 → 𝑅+ be a measurable function generated by the Fred-Holm operator K acting from 

𝐿1(0,1)into 𝐿11(0,1), if for every 𝑝 ∈ (0,1)and for all 𝑡1, 𝑡2 ∈ (0,1) the implication holds, 

                                   𝑡1 < 𝑡2 → ∫ 𝑘𝑖
𝑝

0
(𝑡1, 𝑠)𝑑𝑠 ≥ ∫ 𝑘𝑖

𝑝

0
(𝑡2, 𝑠)𝑑𝑠. 

Finally, we give a short note on measures of noncompactness and fixed point theorem. 

 Let 𝐸 be an arbitrary Banach space with ‖. ‖ and the zero element 𝜃. 
Let also 𝑋 be a nonempty and bounded subset of 𝐸 and 𝐵𝑟 be a closed ball in E centered at 𝜃and radius 𝑟. 

The Hausdorff  measure of noncompactness 𝜒(𝑋) (Banas, J. and Goebel, K.,1980)is defined as 

𝜒(𝑋) =  𝑖𝑛𝑓 {𝑟 >  0: 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑢𝑏𝑠𝑒𝑡 𝑌 𝑜𝑓 𝐸 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 ⊂  𝑌 + 𝐵𝑟}.  
Another measure was defined in the space 𝐿1 (Bana�́� and W. G. El-Sayed, 1980), for any 𝜀 > 0, let 

              𝑐(𝑋) = 𝑙𝑖𝑚𝜀→0{sup𝑥∈𝑋{sup [∫ |𝑥(𝑡)|𝑑𝑡, 𝐷 ⊂ 𝑅+, 𝑚𝑒𝑎𝑠 (𝐷) ≤ 𝜀
𝐷

]}} , 
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 and 

                         𝑑(𝑋) = lim
𝑇→∞

{sup[∫ |𝑥(𝑡)|𝑑𝑡, 𝑥 ∈ 𝑋
∞

𝑇
]}  

Where meas 𝐷 denotes the Lebesgue measure of sub set 𝐷. 

put  

                                        𝛾(𝑋) = 𝑐(𝑋) + 𝑑(𝑋). 

Then we have the following theorem (Bana�́� and W. G. El-Sayed, 1980),which connects between the two measures 

𝜒(𝑋) and 𝛾(𝑋). 

 

 Theorem 2.4: 

Let X be a nonempty, bounded and compact in-measure sub set of  𝐿1(𝑅+), then 

                                     

                                              𝜒(𝑋) ≤ 𝛾(𝑋) ≤ 2𝜒(𝑋) .  

In the case of space 𝐿1(0,1) we have the following theorems (Bana�́� and W. G. El-Sayed, 1980). 

 

Theorem 2.5: 

Let 𝑋 be abounded subset of 𝐿1(0,1) and suppose that there is a family of measurable subset {Ω𝑐}0≤𝑐≤𝑚𝑒𝑎 𝐼, of the 

interval  𝐼 such that 𝑚𝑒𝑎𝑠Ω𝑐 = 𝑐 𝑓𝑜𝑟 𝑒𝑣𝑟𝑒𝑦  𝑐 ∈ [0, 𝑚𝑒𝑎𝑠 𝐼] 
And for every  𝑥 ∈ 𝑋: 𝑐𝑥(𝑡1) ≤ 𝑥(𝑡2), (𝑡1 ∈ Ω𝑐 , 𝑡2 ∉ Ω𝑐) 

Then the set 𝑋 is compact in measure. 

 

Theorem 2.6: 

Let 𝑋 be an arbitrary non-empty and bounded subset of 𝐿1(0,1).If 𝑋 is compact in measure then 𝛽(𝑥) = 𝜒 (𝑋). 
As an application of measures of noncompactness, we recall the fixed point theorem due to( Darbo, G.,1955 ). 

 

Theorem 2.7:  

Let 𝑄 be a non-empty, bounded, closed and convex subset of 𝐸 and let 𝐴: 𝑄 → 𝑄 be a continuous transformation which 

is a contraction with respect to the measure of non-compactness, i.e there exist 𝑘 ∈ [0,1)  

such that 𝜇(𝐴(𝑋) ≤ 𝑘𝜇(𝑋) for any nonempty subset  𝑋 of, then A has at least one fixed point𝑄.  
 

3-Existence of at least a solution for a nonlinear integral equation on 𝑳𝟏[𝟎, 𝟏] 
Now we will discuss the solvability for the following nonlinear integral equation  

𝑥(𝑡) = 𝑔(𝑡) + ∫ 𝑘1(𝑡, 𝑠)𝑓1(𝑠, ∫ 𝑘2(𝑠, 𝜏)𝑓2(𝜏, 𝑥(𝜏))𝑑𝜏)𝑑𝑠, 𝑡 ∈ [𝟎, 𝟏]
𝑠

0

1

0
  (3.1) 

in the space 𝑳𝟏[𝟎, 𝟏]. 
We shall treat equation (3.1) under the following assumptions which are listed below: 

(i) 𝑔 ∈ 𝑳𝟏[𝟎, 𝟏] and almost everywhere positive and nonincreasing in 𝑳𝟏[𝟎, 𝟏]. 
(ii) 𝑓𝑖: [0,1] × 𝑅 → 𝑅    , 𝑖 = 1,2 are nonincreasing functions on 𝑅+with respect to 𝑡 and 𝑥 , satisfy carath�́�odory 

conditions, there are two functions  𝑎𝑖 ∈ 𝐿1(𝑅+) and two Constants 𝑏𝑖 ≥ 0, such that: 

             |𝑓𝑖(𝑡, 𝑥) | ≤ 𝑎𝑖(𝑡) + 𝑏𝑖|𝑥|,  for all 𝑡 ∈ 𝑅+, 𝑥 ∈ 𝑅 and  𝑓𝑖(𝑡, 𝑥) ≥ 0, ∀𝑥 ≥ 0, 𝑖 = 1,2                                                                                                  

(iii) 𝑘𝑖[: [0,1]  ×, → 𝑅, 𝑖 = 1,2 ,  are measurable with respect to 𝑡 and 𝑠 and  𝐾𝑖: 𝐿1 → 𝐿1 

           is bounded with norm ‖𝐾‖, 
            Also, ∀𝐴 > 0 and for all 𝑡1, 𝑡2 ∈ [0,1], we have : 

                      𝑡1 < 𝑡2 → ∫ 𝑘𝑖(𝑡1, 𝑠)𝑑𝑠
𝐴

0
≥ ∫ 𝑘𝑖(𝑡2, 𝑠)𝑑𝑠

𝐴

0
 𝑖 = 1,2  

(iv)    𝑏1𝑏2‖𝐾1‖‖𝐾2‖ < 1. 

Then we can prove the following theorem  

 

Theorem 3.1: 

Let the assumptions (i) −(iv) be satisfied, then the equation (3.1) has at least one solution ,𝑥 ∈ 𝐿1[0,1]  being almost 

everywhere non increasing on[0,1]. 
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Proof  

Consider the operator H: 

𝐻𝑥(𝑡) = 𝑔(𝑡) + ∫ 𝑘1(𝑡, 𝑠)𝑓1(𝑠, ∫ 𝑘2(𝑠, 𝜏)𝑓2(𝜏, 𝑥(𝜏))𝑑𝜏)𝑑𝑠
𝑠

0

1

0
  

The equation (3.1) takes the form  

                                                        𝑥(𝑡) = 𝐻𝑥(𝑡) 

First, let 𝑥 ∈ 𝐿1[0,1] 
 

Then using our assumption (i)→(iii), we have  

|𝐻𝑥(𝑡)| ≤ |𝑔(𝑡)| + |∫ 𝑘1(𝑡, 𝑠)𝑓1(𝑠, ∫ 𝑘2(𝑠, 𝜏)𝑓2(𝜏, 𝑥(𝜏))𝑑𝜏)
𝑠

0

1

0
| 𝑑𝑠   

∫ |𝐻𝑥(𝑡)|
1

0
𝑑𝑡 ≤ ||𝑔|| + ||𝐾1𝐹1𝐾2𝐹2𝑥||  

 

   ≤ ||𝑔|| + ||𝐾1||||𝐾1𝐹1𝐾2𝐹2𝑥|| 

                       ≤ ||𝑔|| + ||𝐾1|| ∫ |𝑓1(𝑠, ∫ 𝑘2(𝑠, 𝑡)𝑓2(𝑡, 𝑥(𝑡))𝑑𝑠)| 𝑑𝑡 
𝑡

0

1

0
  

                       ≤ ||𝑔|| + ||𝐾1|| ∫ [𝑎1(𝑠) + 𝑏1| ∫ 𝑘2(𝑠, 𝑡)𝑓2(𝑡, 𝑥(𝑡))𝑑𝑠|] 𝑑𝑡 
𝑡

0

1

0
  

                       ≤ ||𝑔|| + ||𝐾1||[‖𝑎1‖ + 𝑏1 ∫ ∫ |𝑘2(𝑠, 𝑡)𝑓2(𝑡, 𝑥(𝑡))|𝑑𝑠 ]𝑑𝑡 
𝑡

0

1

0
  

                       ≤ ||𝑔|| + ||𝐾1|| [‖𝑎1‖ + 𝑏1||𝐾2|| ∫ [𝑎2(𝑡) + 𝑏2|𝑥(𝑡)|]
1

0
] 𝑑𝑡  

                       ≤ ||𝑔|| + ||𝐾1|| [‖𝑎1‖ + 𝑏1||𝐾2||[||𝑎2|| + 𝑏2||𝑥||]] 𝑑𝑡 → (1) 

From the last estimate, the space 𝐿1 into itself using theorem (2.1) 

Moreover, using the estimate (1), we see that the operator  𝐻 transforms the ball 𝐵𝑟 into itself, where:  

                      

                         𝑟 =
||𝑔||+||𝐾1||‖𝑎1‖+𝑏1||𝐾1||||𝐾2||||𝑎2||

1−𝑏1𝑏2||𝐾1||||𝐾2||
 

Let 𝑄𝑟be subset of 𝐵𝑟 consisting of all functions being almost everywhere positive and non-increasing on [0,1].  
Note that 𝑄𝑟 is a non-empty, bounded, closed, convex subset of 𝐿1[0,1]. 
Moreover, given theorem (2.2) the set 𝑄𝑟 is compact in measure.   

Next, by taking 𝑥 ∈ 𝑄𝑟, 

Then 𝑥(𝑡) is almost everywhere positive and non-decreasing on 𝑅+,and consequently 𝐾𝑖𝑥(𝑡) is also of the same type (in 

virtue of the assumption (iii) and theorem (2.3)  

Further, the assumption (ii) permits us to deduce that,  

                              𝐻𝑥(𝑡) = 𝑔(𝑡) + 𝐾1𝐹1𝐾2𝐹2𝑥(𝑡),  
Is almost everywhere positive and non-decreasing on [0,1], this fact together with assertion  𝐻: 𝐵𝑟 → 𝐵𝑟 , gives that self-

mapping of the set 𝑄𝑟,since the  

Operator 𝐾 is continuous and  F is continuous in view theorem (2.1), we conclude that  H maps continuously 𝑄𝑟 into 

𝑄𝑟. 

Finally, assume that 𝑋 is non-empty subset of  𝑄𝑟 and 𝜖 > 0 is fixed, then for an arbitrary 𝑥 ∈ 𝑋 and for a set 𝐷 ⊂
[0,1], meas 𝐷 ≤ 𝜖 ,  we obtain  

 

∫ |(𝐻𝑥)(𝑡)|
𝐷

𝑑𝑡 = ∫ |𝑔(𝑡) + ∫ 𝑘1(𝑡, 𝑠)𝑓1(𝑠, ∫ 𝑘2(𝑠, 𝜏)𝑓2(𝜏, 𝑥(𝜏))𝑑𝜏)
𝑠

0

1

0
|

𝐷
𝑑𝑠𝑑𝑡  

≤ ∫ |𝑔(𝑡)|
𝐷

𝑑𝑡 + ∫ |∫ 𝑘1(𝑡, 𝑠)𝑓1(𝑠, ∫ 𝑘2(𝑠, 𝜏)𝑓2(𝜏, 𝑥(𝜏))𝑑𝜏)𝑑𝑠
𝑠

0

1

0
|

𝐷
𝑑𝑡  

≤ ∫ |𝑔(𝑡)|
𝐷

𝑑𝑡 + ∫ ∫ |𝑘1(𝑡, 𝑠) |[𝑎1(𝑠) + 𝑏1| ∫ 𝑘2(𝑠, 𝜏)𝑓2(𝜏
𝑠

0
, 𝑥(𝜏)) 𝑑𝜏|]𝑑𝑠𝑑𝑡 

1

0𝐷
  

≤ ||𝑔||
𝐿1(𝐷)

+ ∫ ∫ |𝑘1(𝑡, 𝑠)| 
1

0𝐷
[𝑎1(𝑠) + 𝑏1 ∫ |𝑘2(𝑠, 𝜏)|

𝑠

0
[𝑎2(𝜏) + 𝑏2|𝑥(𝜏)|]𝑑𝜏𝑑𝑠]𝑑𝑡  

≤   ||𝑔||
𝐿1(𝐷)

+ ‖𝐾1‖𝐷||𝑎1||
𝐿1(𝐷)

+ 𝑏1‖𝐾1‖𝐷‖𝐾2‖𝐷||𝑎2||
𝐿1(𝐷)

+ 𝑏1𝑏2‖𝐾1‖𝐷‖𝐾2‖𝐷 ∫ |𝑥(𝑠)|
𝐷

𝑑𝑠   

Where, 𝐾: 𝐿1(𝐷) → 𝐿1(𝐷), as simple consequently, we get 

∫ |(𝐻𝑥)(𝑡)|
𝐷

𝑑𝑡 ≤ ||𝑔||
𝐿1(𝐷)

+ ‖𝐾1‖𝐷||𝑎1||
𝐿1(𝐷)

+ 𝑏1‖𝐾1‖𝐷‖𝐾2‖𝐷||𝑎2||
𝐿1(𝐷)

  + 𝑏1𝑏2‖𝐾1‖𝐷‖𝐾2‖𝐷 ∫ |𝑥(𝑠)|
𝐷

𝑑𝑠  

The last in quantity gives, 

lim
𝜖→0

{ sup[∫ |𝑔(𝑡)|𝑑𝑡
𝐷

+ ‖𝐾1‖ ∫ |𝑎1(𝑡)|𝑑𝑡 + 𝑏1||𝐾1||
𝐷

||𝐾2||
𝐷

∫ |𝑎2(𝑡)|𝑑𝑡:
𝐷𝐷

 𝐷 ⊂ [0,1], meas 𝐷 ≤ 𝜖]} = 0 

Then 𝛽(𝐻𝑋) ≤ 𝑏1𝑏2||𝐾1||||𝐾2||𝛽(𝑋)  (2) 
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Further, more fixing 𝑇 > 0 we arrive at the following estimate  

∫ |𝐻𝑥(𝑡)|𝑑𝑡 ≤  ∫ |𝑔(𝑡)|𝑑𝑡 + ‖𝐾1‖ ∫ |𝑎1(𝑡)|𝑑𝑡 + 𝑏1‖𝐾1‖𝐷‖𝐾2‖𝐷 ∫ |𝑎2(𝑡)|
∞

𝑇

∞

𝑇

∞

𝑇

∞

𝑇
𝑑𝑡   + 𝑏2𝑏2‖𝐾1‖𝐷‖𝐾2‖𝐷 ∫ |𝑥(𝑡)|𝑑𝑡

∞

𝑇
 

Since lim
𝑇→∞

𝑇 = ∞, the above in quality gives  

𝑑(𝐻𝑋) ≤ 𝑏1𝑏2||𝐾1||
𝐷

||𝐾2||
𝐷

     (3) 

Hence, by combining (2) and (3) we get  

γ(𝐻𝑋) ≤ 𝑏1𝑏2||𝐾1||||𝐾2||γ(𝑋) 

Where γ denotes the measure of non-compactness since 𝑄𝑟is compact in measure, then by using theorem (2.4). 

The last inequality together with the assumption (iv), enables us to apply theorem (2.7), Which proves the existence of a 

fixed point for the operator 𝐻 in 𝑄𝑟 .           ∎   

 

 

4. Results 

 
4-existence of at least a solution for the nonlinear integral equations with fractional order:  

In this section, we will discuss solvability for the following nonlinear integral equation with fractional order  in 𝐿1[0,1] 

𝑥(𝑡) = 𝑔(𝑡) + ∫
(𝑡−𝑠)∝−1

Γ(𝛼)

𝑡

0
𝑓1(𝑠, ∫

(𝑠−𝜏)𝛽−1

Γ(𝛽)
𝑓2(𝜏, 𝑥(𝜏))𝑑𝜏)

𝑠

0
𝑑𝑠,     𝑡 𝜖 [0,1]            (4.1)                                                                                                       

We shall treat equation (4.1) under the following assumptions which are listed below: 

  

(i)     𝑔 ∈ 𝐿1 [0,1],and almost everywhere positive and non-decreasing in 𝐿1[0,1]. 
(ii)   𝑓𝑖  [0,1]:× 𝑅 → 𝑅, 𝑖 = 1,2, are non-decreasing functions on [0,1]   concerning  𝑡  and  𝑥  

        Satisfy  Carath�́�odory conditions, there are two functions 𝑎𝑖 ∈ 𝐿1 [0,1] and two constants    𝑏𝑖 ≥ 0 such that: 

          |𝑓𝑖(𝑡, 𝑥)| ≤ 𝑎𝑖(𝑡) + 𝑏𝑖|𝑥|, for all 𝑡 ∈ [0,1], 𝑥 ∈ 𝑅 and  𝑓𝑖(𝑡, 𝑥) ≥ 0, ∀𝑥 ≥ 0, 𝑖 = 1,2 

   (iii)    𝑘: [0,1] × [0,1] → 𝑅,  is measurable concerning  𝑡 and 𝑠 and 𝐾: 𝐿1 → 𝐿1  is bounded by the norm ||𝐾||. 

          Also, ∀𝐴 > 0 and for all 𝑡1, 𝑡2 ∈ 𝑅+, we have 

                              𝑡1 < 𝑡2 → ∫ (𝑡1 − 𝑠)𝛼−1𝑑𝑠 ≥
𝐴

0
∫ (𝑡2 − 𝑠)𝛽−1𝑑𝑠

𝐴

0
 

(iv)    
𝑏1𝑏2

Γ(α+1)Γ(β+1)
< 1 

Then we can prove the following theorem, 

 

Theorem 4.1: 

 Let the assumptions (i)-(iv) be satisfied, then the equation (4.1) has at least one solution,  𝑥 ∈ 𝐿1[0,1]being almost 

everywhere non-decreasing on [0,1]. 
Proof  

Consider the operator 𝐻:  

𝐻𝑥(𝑡) = 𝑔(𝑡) + ∫
(𝑡−𝑠)∝−1

Γ(𝛼)

𝑡

0
𝑓1(𝑠, ∫

(𝑠−𝜏)𝛽−1

Γ(𝛽)
𝑓2(𝜏, 𝑥(𝜏))𝑑𝜏)

𝑠

0
𝑑𝑠,        𝑡 ∈ [0,1]   

                                                                                Where 0< 𝛼 ≤ 1 and 0 < 𝛽 ≤ 1 

Then the equation (4.1) takes the form   

                                                      𝑥(𝑡) = 𝐻𝑥(𝑡) 

First, let 𝑥 ∈ 𝐿1[0,1] 
Then using our assumption (i)-(iii) we have, 

       |𝐻𝑥(𝑡)| ≤ |𝑔(𝑡)| + ∫ |
(𝑡−𝑠)∝−1

Γ(𝛼)
𝑓1(𝑠, ∫

(𝑠−𝜏)𝛽−1

Γ(𝛽)
𝑓2(𝜏, 𝑥(𝜏))𝑑𝜏) 

𝑠

0
| 𝑑𝑠

𝑡

0
  

∫ |𝐻𝑥(𝑡)|𝑑𝑡 ≤ ∫ |𝑔(𝑡)|𝑑𝑡
1

0
+ ∫ ∫ |

(𝑡−𝑠)∝−1

Γ(𝛼)
𝑓1(𝑠, ∫

(𝑠−𝜏)𝛽−1

Γ(𝛽)
𝑓2(𝜏, 𝑥(𝜏))𝑑𝜏)|𝑑𝑠𝑑𝑡 

𝑠

0

𝑡

0

1

0

1

0
  

≤ ||𝑔(𝑡)||  + ∫ ∫ |
(𝑡−𝑠)∝−1

Γ(𝛼)
||𝑓1(𝑠, ∫

(𝑠−𝜏)𝛽−1

Γ(𝛽)
𝑓2(𝜏, 𝑥(𝜏))𝑑𝜏)|𝑑𝑡𝑑𝑠 

𝑠

0

𝑡=1

𝑡=𝑠

1

𝑠=0
  

≤ ||𝑔||  + ∫
1

Γ(α+1)
 |𝑓1(𝑠, ∫

(𝑠−𝜏)𝛽−1

Γ(𝛽)
𝑓2(𝜏, 𝑥(𝜏))𝑑𝜏)|𝑑𝑠 

𝑠

0

1

𝑠=𝑜
  

≪  ‖𝑔‖ +
1

Γ(α+1)
‖𝐹1𝐾𝐹2‖  

≤ ||𝑔|| + 
1

Γ(α+1)
∫ [𝑎1(𝑠) + 𝑏1| ∫

(𝑠−𝜏)𝛽−1

Γ(𝛽)
𝑓2(𝜏, 𝑥(𝜏))|𝑑𝜏)]𝑑𝑠

𝑠

0

1

0
  

≤ ||𝑔|| +
1

Γ(α+1)
[||𝑎1|| + 𝑏1 ∫ ∫ |

(𝑠−𝜏)𝛽−1

Γ(𝛽)
𝑓2(𝜏, 𝑥(𝜏))|𝑑𝜏]𝑑𝑠

𝑠

0

1

0
  

≤ ||𝑔|| +
1

Γ(α+1)
[||𝑎1|| + 𝑏1

1

Γ(𝛽+1)
∫ [𝑎2(𝜏) + 𝑏2|𝑥(𝜏)|

1

0
]𝑑𝜏]  

≤ ||𝑔|| +
1

Γ(α+1)
[||𝑎1|| +

𝑏1

Γ(𝛽+1)
[‖𝑎2‖ + 𝑏2||𝑥||] → (1)  

 

 

 

 



 

 

 160 

Derna Academy Journal for Applied Sciences (DAJAS) - Legal Filing Number (2023-133), Email: Jas@lad.edu.ly 

 

 

From the last estimate, we deduce that the operator  𝐻 maps continuously, the space 𝐿1  into itself using theorem (2.1). 

 Moreover, using the estimate (1). we  see that the operator 𝐻  transforms the ball 𝐵𝑟 into itself where : 

 

                          𝑟 =  
||𝑔||+

1

Γ(α+1)
[‖𝑎1‖+

𝑏1
Γ(𝛽+1)

||𝑎2||]

(1−
𝑏1𝑏2

Γ(α+1)Γ(β+1)
)

 

 

Let 𝑄𝑟be subset of 𝐵𝑟 consisting of all functions being almost everywhere positive and non-increasing on 𝑅+. 
Note that 𝑄𝑟 is a non-empty, bounded , closed, convex subset of 𝐿1[0,1]. 
Moreover, in view of  Theorem (2.2) the set 𝑄𝑟 is compact in measure. 

Next, by taking  𝑥 ∈ 𝑄𝑟  , then 𝑥(𝑡) is almost everywhere positive and non-increasing on 𝐿1[0,1].and consequently 

𝐾𝑥(𝑡)  is also of the same type (in virtue of the assumption (iii) and theorem (2.3) ). 

Further, the assumption (ii) permits us to deduce that: 

 

𝐻𝑥(𝑡) = 𝑔(𝑡)  + 𝐹1𝐾𝐹2𝑥(𝑡) 
 

Is also almost everywhere positive and non-decreasing on 𝑅+, this fact together with assertion,  𝐻: 𝐵𝑟 → 𝐵𝑟   gives that 

self–mapping of the set 𝑄𝑟 . 
 Since the operator 𝐾 is continuous and 𝐹 is continuous in view theorem (2.1), we conclude that 𝐻 mapps continuous 𝑄𝑟 

into 𝑄𝑟 . 

Note, that: 

 

𝐾1(𝑡, 𝑠) =
(𝑡−𝑠)𝛼−1

Γ(𝛼)
   

𝐾1𝑥(𝑡) = ∫
(𝑡−𝑠)𝛼−1

Γ(𝛼)
𝑥(𝑠)𝑑𝑠

𝑡

0
  

||𝐾1𝑥|| = ∫ ∫ |
(𝑡−𝑠)𝛼−1

Γ(𝛼)
|

𝑡

𝑠=0

1

𝑡=0
|𝑥(𝑠)|𝑑𝑠𝑑𝑡  

            = ∫ ∫ |
(𝑡−𝑠)𝛼−1

Γ(𝛼)
|

1

𝑡=𝑠

1

𝑠=0
|𝑥(𝑠)|𝑑𝑡𝑑𝑠  

Let  J=∫ |
(𝑡−𝑠)𝛼−1

Γ(𝛼)
|

1

𝑡=𝑠
𝑑𝑡 

         =∫ |
(𝑡−𝑠)𝛼−1

Γ(𝛼)
|

1

𝑡−𝑠=0
𝑑(𝑡 − 𝑠) = 1 

Then 

||𝐾1𝑥|| =
1

Γ(𝛼+1)
 ∫ |𝑥(𝑠)|

1

0
𝑑𝑠  

||𝐾1|| =
‖𝑥‖

Γ(𝛼+1)
  

 

𝑠𝑢𝑝
𝑥 ≠ 0
𝑥 ∈ 𝑘

‖𝐾𝑥‖

‖𝑥‖
= 1  

Also, we can note that 

𝐾2(𝑠, 𝜏) =
(𝑠−𝜏)𝛽−1

Γ(𝛽)
   

𝐾2𝑥(𝑡) = ∫
(𝑠−𝜏)𝛽−1

Γ(𝛽)
𝑥(𝜏)𝑑𝜏

𝑠

0
  

||𝐾2𝑥|| = ∫ ∫ |
(𝑠−𝜏)𝛽−1

Γ(𝛽)
|

𝑡

𝑠=𝜏

1

𝜏=0
|𝑥(𝜏)|𝑑𝜏𝑑𝑠Then 

||𝐾2𝑥|| =
1

Γ(𝛽+1)
 ∫ |𝑥(𝜏)|

1

𝜏=0
𝑑𝜏  

||𝐾2𝑥|| =
‖𝑥‖

Γ(𝛽+1)
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Then 

||𝐾2|| =
1

Γ(β+1)
  

Finally, assume that 𝑋 is no-empty subset of 𝑄𝑟 and 𝜖 > 0  is fixed, then for an arbitrary 𝑥 ∈ 𝑋 and for a set 𝐷 ⊂

[0,1], meas 𝐷 ≤ 𝜖 ,  we obtain  

∫ |(𝐻𝑥)(𝑡)|
𝐷

𝑑𝑡 = ∫ |𝑔(𝑡) + ∫
(𝑡−𝑠)𝛼−1

Γ(𝛼)
𝑓1(𝑠, ∫

(𝑠−𝜏)𝛽−1

Γ(𝛽)
𝑓2(𝜏, 𝑥(𝜏))𝑑𝜏)

𝑠

0

𝑡

0
|

𝐷
𝑑𝑠𝑑𝑡  

≤ ∫ |𝑔(𝑡)|
𝐷

𝑑𝑡 + ∫ |∫
(𝑡−𝑠)𝛼−1

Γ(𝛼)
𝑓1(𝑠, ∫

(𝑠−𝜏)𝛽−1

Γ(𝛽)
𝑓2(𝜏, 𝑥(𝜏))𝑑𝜏)𝑑𝑠

𝑠

0

𝑡

0
|

𝐷
𝑑𝑡  

≤ ∫ |𝑔(𝑡)|
𝐷

𝑑𝑡 + ∫ ∫ |
(𝑡−𝑠)𝛼−1

Γ(𝛼)
|

1

𝑡=𝑠𝐷
[𝑎1(𝑠) + 𝑏1 |∫

(𝑠−𝜏)𝛽−1

Γ(𝛽)
𝑓2(𝜏, 𝑥(𝜏))𝑑𝜏

𝑠

0
|]𝑑𝑡𝑑𝑠  

≤ ||𝑔||
𝐷

+
1

Γ(𝛼+1)
[||𝑎1|| + 𝑏1

1

Γ(β+1)
∫ [𝑎2(𝜏) + 𝑏2|𝑥(𝜏)|]𝑑𝜏]

𝐷
   

≤ ||𝑔||
𝐷

+
1

Γ(𝛼+1)
||𝑎1|| +

𝑏1

Γ(α+1)Γ(β+1)
||𝑎2|| +

𝑏1𝑏2

Γ(α+1)Γ(β+1)
∫ |𝑥(𝜏)|𝑑

𝐷
𝜏  

Where 𝐾: 𝐿1(𝐷) → 𝐿1(𝐷), as simple consequently, we get 

∫ |(𝐻𝑥)(𝑡)|
𝐷

𝑑𝑡 ≤ ||𝑔||
𝐿1(𝐷)

+
1

Γ(𝛼+1)
||𝑎1||

𝐿1(𝐷)
+

𝑏1

Γ(α+1)Γ(β+1)
||𝑎2||

𝐿1(𝐷)
 + 

𝑏1𝑏2

Γ(α+1)Γ(β+1)
∫ |𝑥(𝜏)|𝑑𝜏

𝐷
 

The above in quantity gives 

 lim
𝜖→0

{ sup[∫ |𝑔(𝑡)|𝑑𝑡
𝐷

+
1

Γ(𝛼+1)
∫ |𝑎1(𝑡)|𝑑𝑡 +

𝑏1

Γ(α+1)Γ(β+1)
∫ |𝑎2(𝑡)|𝑑𝑡:

𝐷𝐷
   𝐷 ⊂ [0,1],  meas  𝐷 ≤ 𝜖]} = 0 

Then 𝛽(𝐻𝑥(𝑡)) ≤
𝑏1𝑏2

Γ(α+1)Γ(β+1)
𝛽(𝑋) → (2)   

Where 𝛽 denotes the measure of non-compactness since 𝑄𝑟is compact in measure, then by using theorem (2.4). 

We can write the last inequality in the form 

 

𝜒(𝐻𝑥(𝑡)) ≤
𝑏1𝑏2

Γ(α+1)Γ(β+1)
𝜒(𝑋)  

 

The last inequality together with the assumption (iv), enables us to apply theorem (2.7), Which proves the existence of a 

fixed point for the operator 𝐻 in 𝑄𝑟 .           ∎   

In the same way, we will discuss solvability for the following linear integral equation with 

fractional order on the space  𝐿1(0,1) . 
 

𝑥(𝑡) = 𝑔(𝑡) + ∫
(𝑡−𝑠)𝛼−1

Γ(𝛼)

𝑡

0
𝑓1(𝑠, ∫ 𝑘(𝑠, 𝜏)𝑓2(𝜏, 𝑥(𝜏))𝑑𝜏)

𝑠

0
𝑑𝑠,     𝑡 ∈ [0,1]            (4.2)                                                                                                       

 

We shall treat equation (4.2) under the following assumptions which are listed below: 

  (i)     𝑔 ∈ 𝐿1(0,1), and almost everywhere positive and non-decreasing in (0,1),      

(ii)    𝑓𝑖 ∶ (0,1) × 𝑅 → 𝑅, 𝑖 = 1,2, are non-decreasing functions on (0,1) concerning  𝑡 and   

          𝑥 satisfy Carath�́�odory conditions, there are two functions 𝑎𝑖 ∈ 𝐿1(0,1) and two constants 

         𝑏𝑖 ≥ 0 such that: 

         |𝑓𝑖(𝑡, 𝑥)| ≤ 𝑎𝑖(𝑡) + 𝑏𝑖|𝑥|, for all 𝑡 ∈ (0,1), 𝑥 ∈ 𝑅 and  𝑓𝑖(𝑡, 𝑥) ≥ 0, ∀𝑥 ≥ 0, 𝑖 = 1,2 

(iii)    𝑘: (0,1) × (0,1) → 𝑅+,  is measurable concerning  𝑡 and 𝑠 and 𝐾: 𝐿1 → 𝐿1. 

        (From assumption (iii), we see that 𝐾 is continuous and so it is bounded by norm ||𝐾||).  

           Also, ∀𝐴 > 0 and for all 𝑡1, 𝑡2 ∈ (0,1), we have 

                              𝑡1 < 𝑡2 → ∫ (𝑡1 − 𝑠)𝛼−1𝑑𝑠 ≥
𝐴

0
∫ (𝑡2 − 𝑠)𝛼−1𝑑𝑠

𝐴

0
 

(iv) 
𝑏1𝑏2||𝐾||

Γ(𝛼+1)
< 1 

 

 

 

 

 

 

 

 

 



 

 

 162 

Derna Academy Journal for Applied Sciences (DAJAS) - Legal Filing Number (2023-133), Email: Jas@lad.edu.ly 

 

 

Then we can prove the following theorem, 

 

Theorem 4.1: 

 Let the assumptions (i)-(iv) are satisfied, then the equation (4.1) has at least one solution,  𝑥 ∈ 𝐿1(0,1)  being almost 

everywhere non-decreasing on (0,1). 

 

Proof  

Consider the operator 𝐻:  

𝐻𝑥(𝑡) = 𝑔(𝑡) + ∫
(𝑡−𝑠)𝛼−1

Γ(𝛼)

𝑡

0
𝑓1(𝑠, ∫ 𝑘(𝑠, 𝜏)𝑓2(𝜏, 𝑥(𝜏))𝑑𝜏)

𝑠

0
𝑑𝑠,        𝑡 ∈ [0,1]  

                                                                      Where 𝑜 < 𝛼 ≤ 1  
 

Then the equation (4.2) takes the form   

                                                      𝑥(𝑡) = 𝐻𝑥(𝑡) 

First, let 𝑥 ∈ 𝐿1[0,1] 
Then using our assumption (i)-(iii) we have, 

    |𝐻𝑥(𝑡)| ≤ |𝑔(𝑡)| + ∫ |
(𝑡−𝑠)𝛼−1

Γ(𝛼)
𝑓1(𝑠, ∫ 𝑘(𝑠, 𝜏)𝑓2(𝜏, 𝑥(𝜏))𝑑𝜏) 

𝑠

0
| 𝑑𝑠

𝑡

0
   

∫ |𝐻𝑥(𝑡)|𝑑𝑡 ≤ ∫ |𝑔(𝑡)|𝑑𝑡
1

0
+ ∫ ∫ |

(𝑡−𝑠)𝛼−1

Γ(𝛼)
𝑓1(𝑠, ∫ 𝑘(𝑠, 𝜏)𝑓2(𝜏, 𝑥(𝜏))𝑑𝜏)|𝑑𝑠𝑑𝑡 

𝑠

0

𝑡

0

1

0

1

0
  

≤ ||𝑔(𝑡)||  + ∫ ∫ |
(𝑡−𝑠)𝛼−1

Γ(𝛼)
||𝑓1(𝑠, ∫ 𝑘(𝑠, 𝜏)𝑓2(𝜏, 𝑥(𝜏))𝑑𝜏)|𝑑𝑡𝑑𝑠 

𝑠

0

1

𝑡=𝑠

1

𝑠=0
  

≤ ||𝑔||  + ∫ |
(1−𝑠)𝛼

Γ(𝛼+1)
−

(𝑠−𝑠)𝛼

Γ(𝛼+1)
||𝑓1(𝑠, ∫ 𝑘(𝑠, 𝜏)𝑓2(𝜏, 𝑥(𝜏))𝑑𝜏)|𝑑𝑠 

𝑠

0

1

𝑠=𝑜
  

≤ ||𝑔||  + ∫
(1−𝑠)𝛼

Γ(𝛼+1)
|𝑓1(𝑠, ∫ 𝑘(𝑠, 𝜏)𝑓2(𝜏, 𝑥(𝜏))𝑑𝜏)|𝑑𝑠 

𝑠

0

1

𝑠=𝑜
  

≤ ||𝑔||  + ∫
1

Γ(𝛼+1)
|𝑓1(𝑠, ∫ 𝑘(𝑠, 𝜏)𝑓2(𝜏, 𝑥(𝜏))𝑑𝜏)|𝑑𝑠 

𝑠

0

1

𝑠=𝑜
  

≤  ||𝑔||  +
1

Γ(𝛼+1)
∫ |𝑓1(𝑠, ∫ 𝑘(𝑠, 𝜏)𝑓2(𝜏, 𝑥(𝜏))𝑑𝜏)|𝑑𝑠

𝜏

0

1

0
  

≤ ||𝑔||  +
1

Γ(𝛼+1)
||𝐹1𝐾𝐹2||  

≤ ||𝑔|| +
1

Γ(𝛼+1)
∫ [𝑎1(𝑠) + 𝑏1| ∫ 𝑘(𝑠, 𝜏)𝑓2(𝜏, 𝑥(𝜏))|𝑑𝜏)]𝑑𝑠

𝑠

0

1

0
  

≤ ||𝑔|| +
1

Γ(𝛼+1)
[||𝑎1|| + 𝑏1 ∫ ∫ |𝑘(𝑠, 𝜏)𝑓2(𝜏, 𝑥(𝜏))|𝑑𝜏]𝑑𝑠

𝑠

0

1

0
  

≤ ||𝑔|| +
1

Γ(𝛼+1)
[||𝑎1|| + 𝑏1||𝐾||[‖𝑎2‖ + 𝑏2||𝑥||] → (1)  

From the last estimate we deduce that the operator  𝐻 maps continuously, the space 𝐿1  into itself using theorem (2.1). 

 Moreover, using the estimate (1), we see that the operator 𝐻 transforms the ball  𝐵𝑟 into itself where:  

                           

                                                                         𝑟 =  
||𝑔||+

1

Γ(𝛼+1)
[‖𝑎1‖+𝑏1||𝐾||||𝑎2||]

(1−
𝑏1𝑏2||𝐾||

Γ(𝛼+1)
)

 

 

Let 𝑄𝑟be subset of 𝐵𝑟 consisting of all functions being are almost everywhere positive and non-increasing on (0,1). 
Note that 𝑄𝑟 is non-empty , bounded , closed, convex subset of 𝐿1(0,1). 
Moreover, in view of  Theorem (2.5) the set 𝑄𝑟 is compact in measure. 

Next, by taking  𝑥 ∈ 𝑄𝑟  , then 𝑥(𝑡) is almost everywhere positive and non-increasing on (0, 1) and consequently 𝐾𝑥(𝑡)  

is also of the same type (in virtue of the assumption (iii) and theorem (2.1) ). 

Further, the assumption (ii) permits us to deduce that: 

 

                               𝐻𝑥(𝑡) = 𝑔(𝑡)  +
(𝑡−𝑠)𝛼−1

Γ(𝛼+1)
 𝐹1𝐾𝐹2𝑥(𝑡)  

Is also almost everywhere positive and non-decreasing on (0, 1), this fact together with assertion,  𝐻: 𝐵𝑟 → 𝐵𝑟   gives 

that self–mapping of the set 𝑄𝑟 . 
 since the operator 𝐾 is continuous and 𝐹 is continuous in view theorem (2.1), we conclude that 𝐻 mapps continuous 𝑄𝑟 

into 𝑄𝑟 . 

 

 

 

 

 

 

 



 

 

 163 

Derna Academy Journal for Applied Sciences (DAJAS) - Legal Filing Number (2023-133), Email: Jas@lad.edu.ly 

 

Note, that: 

𝐾(𝑡, 𝑠) =
(𝑡−𝑠)𝛼−1

Γ(𝛼)
   

𝐾𝑥(𝑡) = ∫
(𝑡−𝑠)𝛼−1

Γ(𝛼)
𝑥(𝑠)𝑑𝑠

𝑡

0
  

||𝐾𝑥|| = ∫ ∫
|𝑡−𝑠|𝛼−1

Γ(𝛼)

𝑡

𝑠=0

1

𝑡=0
|𝑥(𝑠)|𝑑𝑠𝑑𝑡  

            =
1

Γ(𝛼+1)
∫ |𝑥(𝑠)|𝑑𝑠 

1

𝑠=0
  

||𝐾𝑥|| =
||𝑥||

Γ(𝛼+1)
  

𝑠𝑢𝑝
𝑥 ≠ 0
𝑥 ∈ 𝑘

‖𝐾𝑥‖

‖𝑥‖
=

1

Γ(𝛼+1)
  

||𝐾|| =
1

Γ(𝛼+1)
  

Finally, assume that 𝑋 is no-empty subset of 𝑄𝑟 and 𝜖 > 0  is fixed, then for an arbitrary 𝑥 ∈ 𝑋 and for a set 𝐷 ⊂
(0,1), meas 𝐷 ≤ 𝜖 ,  we obtain  

∫ |(𝐻𝑥)(𝑡)|
𝐷

𝑑𝑡 = ∫ |𝑔(𝑡) + ∫
(𝑡−𝑠)𝛼−1

Γ(𝛼)
𝑓1(𝑠, ∫ 𝑘(𝑠, 𝜏)𝑓2(𝜏, 𝑥(𝜏))𝑑𝜏)

𝑠

0

𝑡

0
|

𝐷
𝑑𝑠𝑑𝑡  

≤ ∫ |𝑔(𝑡)|
𝐷

𝑑𝑡 + ∫ |∫
(𝑡−𝑠)𝛼−1

Γ(𝛼)
𝑓1(𝑠, ∫ 𝑘(𝑠, 𝜏)𝑓2(𝜏, 𝑥(𝜏))𝑑𝜏)𝑑𝑠

𝑠

0

𝑡

0
|

𝐷
𝑑𝑡  

≤ ∫ |𝑔(𝑡)|
𝐷

𝑑𝑡 + ∫ ∫ |
(𝑡−𝑠)𝛼−1

Γ(𝛼)
|

1

𝑡=𝑠𝐷
[𝑎1(𝑠)+𝑏1|∫ 𝑘(𝑠, 𝜏)𝑓2(𝜏, 𝑥(𝜏))𝑑𝜏

𝑠

0
|]𝑑𝑡𝑑𝑠                                          

≤ ||𝑔||
𝐷

+
1

Γ(𝛼+1)
[||𝑎1|| + 𝑏1||𝐾|| ∫ [𝑎2(𝜏) + 𝑏2|𝑥(𝜏)|]𝑑𝑠]

𝐷
  

≤ ||𝑔||
𝐷

+
1

Γ(𝛼+1)
||𝑎1|| +

1

Γ(𝛼+1)
𝑏1||𝐾||||𝑎2|| +

𝑏1𝑏2||𝐾||

Γ(𝛼+1)
∫ |𝑥(𝑠)|𝑑𝑠

𝐷
  

Where 𝐾: 𝐿1(𝐷) → 𝐿1(𝐷), as simple consequently we get 

∫ |(𝐻𝑥)(𝑡)|
𝐷

𝑑𝑡 ≤ ||𝑔||
𝐿1(𝐷)

+
1

Γ(𝛼+1)
||𝑎1||

𝐿1(𝐷)
+

1

Γ(𝛼+1)
𝑏1||𝐾||

𝐷
||𝑎2||

𝐿1(𝐷)
+       

1

Γ(𝛼+1)
𝑏1𝑏2‖𝐾‖ ∫ |𝑥(𝑠)|𝑑𝑠

𝐷
 

 

The above in quantity gives 

 

 lim
𝜖→0

{ sup[∫ |𝑔(𝑡)|𝑑𝑡
𝐷

+
1

Γ(𝛼+1)
∫ |𝑎1(𝑡)|𝑑𝑡 + +

1

Γ(𝛼+1)
𝑏1||𝐾||

𝐷
∫ |𝑎2(𝑡)|𝑑𝑡:

𝐷𝐷
 

            𝐷 ⊂ (0,1),  meas  𝐷 ≤ 𝜖]} = 0 

Then 𝛽(𝐻𝑥(𝑡)) ≤
𝑏1𝑏2||𝐾||

Γ(𝛼+1)
𝛽(𝑋)   

Where 𝛽 is the De Blasi measure of non-compactness: Since 𝑄𝑟 is compact in measure, then by using theorem (2.6(, we 

can write the last inequality in the form  

                                𝜒(𝐻𝑋) ≤
𝑏1𝑏2||𝐾||

Γ(𝛼+1)
𝜒(𝑋) 

This inequality together with the assumption (vi) enables us to apply theorem (2.8), which proves the existence of a 

fixed point for the operator 𝐻 in 𝑄𝑟 .      ∎ 

                                

5. CONCLUSION 

 
In this work, we determined the sufficient conditions under which the existence theorem of a nonlinear integral equation 

with convolution kernel is proved in the space 𝐿1[0,1] , Also the same situation is proved for a nonlinear integral 

equation  with fractional order in the spaces 𝐿1[0,1] and 𝐿1(0,1)  
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