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ABSTRACT 

Brain tumor segmentation plays a vital role in medical image analysis, 

offering crucial insights for diagnosis, treatment planning, and surgical 

guidance. However, manual segmentation by radiologists is often time-

intensive, subjective, and susceptible to variability between observers. 

In this study, an automated segmentation approach is proposed using a 

U-Net-based convolutional neural network (CNN), which is specifically 

tailored for biomedical image segmentation tasks. The model is trained 

and tested on MRI images, with preprocessing and data augmentation 

techniques applied to improve its generalization performance. To 

evaluate the effectiveness of the segmentation, commonly used metrics 

such as dice coefficient, Intersection over Union (IoU), accuracy, and 

sensitivity are employed. These metrics collectively assess the model’s 

precision in identifying tumor boundaries, ensuring high overlap with 

tumor regions while minimizing errors like false positives and false 

negatives. The used model achieved an accuracy of 99.44%, a Dice score 

of 83.76%, and an IoU of 72.70%. These results demonstrate the U-Net-

based framework's robustness and reliability, highlighting its potential 

to assist radiologists in achieving faster and more consistent brain tumor 

segmentation. 
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1.  INTRODUCTION 

A brain tumor is an atypical growth of cells that can arise in various regions inside the skull, including the brain tissue, 

cranial nerves, protective membranes (meninges), the bony skull itself, or glands such as the pituitary and pineal. These 

tumors are generally categorized according to the specific cell type from which they emerge. They may be primary, 

originating directly within the brain, or secondary (metastatic), having spread to the brain from cancer located in another 

part of the body (KK et al., 2013). Detecting brain tumors early significantly increases the likelihood of successful 

treatment. Various brain imaging techniques—like PET, SPECT, CT, and especially MRI—are used to gather vital 

information about a tumor’s location, size, shape, and type. MRI is particularly valuable because it provides detailed 

images of soft tissues and is widely available. While spotting tumors in MRI scans is relatively simple, outlining the 

tumor’s exact structure is much more complex.  
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This detailed mapping, known as segmentation, is crucial for understanding the tumor, planning surgery, and choosing 

the right treatment (Abd-Ellah et al., 2019). Segmenting brain tumors from medical images is essential for improving 

diagnosis, guiding treatment, and evaluating clinical strategies. This process involves accurately identifying abnormal 

tissue in brain scans, which sharpens structural understanding and allows for detailed measurement. Segmentation can be 

done either by experts manually or through automated systems. Manual work, however, is time-consuming, depends 

heavily on individual skill, and often lacks consistency. Image distortions from scanning limitations, along with the 

unpredictable shape, location, and unclear edges of many tumors, make this task especially challenging (Kaifi, 2023).  

Automated segmentation helps speed up medical workflows by reducing the time spent on image analysis and giving 

doctors more accurate views of anatomical structures or disease. Early in the analysis process, semantic segmentation 

improves results by filtering out unnecessary details and focusing on key areas like tumors or organ outlines. Segmentation 

techniques typically fall into two types: semantic segmentation, which labels each pixel based on category, and instance 

segmentation, which also separates different instances of the same structure. Building reliable models for identifying 

diseased versus healthy tissue—or mapping specific regions—depends on well-prepared datasets with detailed, expert-

labeled examples that reflect the complexity of medical images (Azad et al, 2024). The complexities of diagnosing brain 

tumors through manual interpretation have driven a growing reliance on advanced computational methods. In particular, 

researchers are increasingly turning to intelligent algorithms—most notably, machine learning and its deep learning 

subfield—to streamline and strengthen diagnostic workflows. Among these, Convolutional Neural Networks (CNNs) 

have had a transformative impact, enabling models to autonomously extract layered, data-driven patterns from raw 

medical images without the need for handcrafted features. CNNs have proven especially effective in demanding tasks 

such as tumor localization, segmentation, and classification (Missaoui et al, 2025). Semantic segmentation works by 

labeling each pixel in an image according to its category. This is often done using models built around an encoder-decoder 

structure, like FCN, DeepLab, and especially U-Net. These models first simplify the input into compact features, then 

reconstruct a detailed output. While effective, they do not always make it clear how decisions are made. U-Net stands out 

in medical imaging for its unique design: it mirrors the encoder and decoder and includes skip connections that link early 

and late layers. This setup helps the model combine small details with the bigger picture—crucial in medical scans, which 

often have unclear edges and background noise (Wang et al., 2022). Brain tumor segmentation has seen notable progress, 

with U-Net models becoming widely used for their strength in handling intricate image features. Researchers have 

introduced a range of modifications aimed at boosting precision, speed, and reliability. These developments have been 

tested across different datasets and rely on varied preprocessing methods to refine outcomes and address practical 

challenges. Obayya et al. (2025) introduced a U-Net variant with nested skip connections and custom loss functions, 

achieving strong results on a low-grade glioma dataset. Walsh et al. (2022) developed a lightweight U-Net that performs 

real-time segmentation with minimal training data, showing solid results on the BITE dataset. Cherguif et al. (2019) 

applied deep convolutional U-Net models to BRATS 2017 data, demonstrating reliable performance on both high- and 

low-grade gliomas. Kasar et al. (2024) compared U-Net and SegNet for tumor segmentation, focusing on fully automated 

approaches using encoder-decoder structures. Van Truong and Thao (2021) incorporated a hybrid loss function combining 

dice and level set loss to enhance accuracy, especially for finer structures, using a dataset of around 4,000 MRI slices. 

Ghosh and Santosh (2021) compared standard U-Net models with versions using a ResNeXt50 backbone and feature 

pyramid networks, showing competitive results on the TCGA-LGG dataset. Hamim and Jony (2024) proposed a deeper 

U-Net model with multi-inception modules and normalization techniques, tested on BraTS 2019 data, to reduce manual 

effort and improve segmentation precision. Segmenting brain tumors from MRI scans is a key step in diagnosing and 

treating patients; however, manual methods are often slow, inconsistent, and subjective. This study develops an automated 

segmentation system based on a U-Net. The model is trained on MRI data using preprocessing and augmentation 

techniques to improve accuracy and reliability, aiming to support radiologists with consistent and precise tumor 

identification. 

2. METHOD 

The proposed method focuses on the development of an automated brain tumor segmentation system utilizing the U-Net 

architecture, specifically tailored for processing MRI images. This approach leverages the strengths of U-Net in capturing 

both global context and fine-grained localization, which are essential for accurately delineating tumor regions within 

complex brain structures. The overall process involves several key stages, including data preprocessing, model training, 

and prediction. The structure of the method and its sequential pipeline is illustrated in Figure 1, outlining the complete 

workflow from data input to the ultimate segmented output. 

 



 

 

 78 

Derna Academy Journal for Applied Sciences (DAJAS) - Legal Filing Number (2023-133), Email: Jas@lad.edu.ly 

 

 

 

 

 
Fig. 1 Methodological Workflow 

 

2.1.  DATASET AND PRE-PROCESSING 

The dataset used in this study is from Figshare (Cheng, 2017), comprising 3064 MRI images along with their 

corresponding 3064 segmentation masks. These images are used to train and evaluate the model for medical image 

analysis. Figure 2 displays few representative samples illustrating both the original MRI images and their corresponding 

masks taken from dataset used in this study. 

 

 

Fig. 2 Dataset Example Samples 
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Preprocessing is essential for improving the quality and consistency of MRI input data. The dataset is split into 60% for 

training, 20% for validation, and 20% for testing to ensure a balanced evaluation of the model's performance. The training 

set is used to fit the model, the validation set helps tune hyperparameters and prevent overfitting, and the test set is 

reserved for final performance assessment on unseen data. All images and their corresponding masks are resized to 

256×256 pixels to ensure compatibility with the U-Net model's input requirements. Intensity normalization is applied to 

minimize variations across scans. During training, the U-Net model learns to segment tumor regions, producing binary 

masks that highlight tumor boundaries. In addition, to enhance generalization and reduce overfitting, various data 

augmentation techniques—such as random horizontal mirroring, positional and dimensional adjustments through shifting, 

scaling, and rotation, and intensity-based enhancements via brightness and contrast alterations—are used, simulating real-

world variability and improving model robustness. 

 

2.2.  IMPLEMENTED MODEL 

 U-Net (Ronneberger et al., 2015) is a pioneering deep learning architecture designed specifically for biomedical image 

segmentation, where pixel-level accuracy is essential for identifying structures such as cells, tumors, and organs. Unlike 

traditional classification tasks that assign a single label to an entire image, segmentation requires labeling each pixel, 

making the task more complex—especially in medical contexts where annotated data is limited. U-Net was developed to 

address this need, particularly in high-resolution medical imaging applications like microscopy. The architecture is 

characterized by its distinctive U-shaped structure, composed of a contracting path (encoder) and an expansive path 

(decoder). The encoder extracts contextual features through repeated convolution and max-pooling layers, reducing 

spatial dimensions while capturing semantic information. The decoder then reconstructs the spatial resolution using 

transposed convolutions. A key innovation of U-Net is its skip connections between corresponding layers in the encoder 

and decoder. These connections ensure that fine-grained spatial information, lost during downsampling, is retained and 

integrated into the upsampling process—thereby enabling precise localization crucial for segmentation tasks. Figure 3 

illustrates the U-Net architecture, highlighting the symmetric design and the role of skip connections in feature 

preservation. 

 

 

  

Fig. 3 U-net blueprint [15] 
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The implemented U-Net follows the same architectural structure illustrated in Figure 3, with minor modifications. These 

include the addition of extra convolutional layers within each block to enhance feature extraction, and an adjustment to 

the input image dimensions, which are resized to 256×256 pixels for compatibility with the network. 

 

2.2.  TRAINING AND EVALUATION 

The model is trained using a set of carefully selected parameters to optimize performance. The key training 

hyperparameters and their respective values are detailed in Table 1, providing insight into the training configuration used 

for this study. 

 

Table 1 Training Parameters 

 

Parameters Configuration 

Optimizer Adam 

Loss  Combination (Dice and Binary) 

Initial learning rate 0.0001 

Batch Size 16 

Epochs 50 

 

To assess segmentation performance, several evaluation measures are employed, each capturing a different aspect of 

model behavior. The Dice Score, a key indicator, reflects how closely the predicted regions align with the actual tumor 

areas—higher values signify better overlap. Similarly, the IoU gauges the accuracy of shape and size by comparing the 

overlap area to the total combined area of predicted and true segments. Pixel-wise accuracy is also considered, though it 

may be misleading in datasets with class imbalance, where non-tumor regions dominate. Throughout training, the loss 

value is monitored to indicate how far the predictions deviate from the ground truth, playing a central role in model 

optimization. Collectively, these measures offer a layered understanding of the model’s ability to deliver precise, 

consistent, and clinically meaningful segmentation results. 

 

3. ETHIC APPROVAL   

This study utilized the publicly available brain tumor MRI dataset published by Jun Cheng on Figshare (Cheng, 2017). 

 

 

4.  RESULTS AND DISCUSSIONS 

The performance of the segmentation model is evaluated through both quantitative and qualitative analyses. The 

quantitative assessment involves key evaluation metrics, which collectively measure the effectiveness of the model’s 

segmentation capabilities. Complementing these numerical results, the qualitative evaluation presents visual comparisons 

between the predicted segmentation masks and the ground truth, providing deeper insight into the model’s ability to 

accurately capture fine structural features. Figure 4, displays four plots illustrating the training and validation performance 

of a model over 50 epochs. 
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 Fig. 4 Train and Validation Performance 

 

Training and validation accuracy reflect how well the model performs on both the training and unseen validation datasets. 

During the initial epochs, there is a steep rise in accuracy for both sets, quickly exceeding 95%. As training continues, the 

accuracy steadily improves and ultimately stabilizes above 99%, indicating that the model is effectively learning the task 

and generalizing well to new data. Training and validation loss track the model's error on the respective datasets. Both 

loss curves exhibit a sharp decline early in training, highlighting rapid improvements. Over time, the rate of decrease 

slows, and the loss values settle below 0.1, suggesting that the model is approaching convergence with minimal error. 

Training and validation Dice scores capture how well the model segments images, with the Dice coefficient being a 

standard measure in this domain. Both training and validation Dice values rise swiftly in the first few epochs. As training 

progresses, the scores level off above 0.8, with the validation set typically showing slightly lower values than the training 

set—an expected outcome in most learning scenarios. Training and validation IoU measure the overlap between predicted 

and actual segmentation masks. Similar to the Dice trend, both IoU curves rise significantly in the early stages, then 

gradually plateau. Final IoU values range between 0.7 and 0.8, suggesting a strong match between predictions and ground 

truth. Ultimately, as illustrated in Figure 4, the upward trends in accuracy, Dice, and IoU—alongside the downward trend 

in loss—demonstrate that the model is learning effectively and has largely converged by the 50th epoch. These metrics 

together indicate solid performance across training and validation phases. The experimental results of performance of the 

U-Net model are summarized in Table 2. 

 

Table 2 Performance Results 

 

Metrics Accuracy  Dice  IoU  Loss  

U-net  0.9944 0.8376 0.7270 0.0998 

 

The model achieved an accuracy of 99.44%, indicating that the vast majority of pixel classifications were correct. 

However, while accuracy is high, it can sometimes be misleading in segmentation tasks with class imbalance. Therefore, 

more informative metrics such as Dice and IoU were also considered. The U-Net model reached a dice score of 0.8376, 

reflecting a good balance between precision and recall in the predicted segmentation masks. This suggests that the model 

effectively captures the overlap between predicted and ground truth regions. 
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 Additionally, the IoU score of 0.7270 further confirms the model’s ability to produce accurate segmentation boundaries, 

although slightly lower than the Dice score, as expected due to its stricter calculation. Moreover, the loss value of 0.0998 

indicates effective convergence during training, with relatively low prediction error. Overall, the results in Table 2 

highlight U-Net's robustness and effectiveness in medical image segmentation tasks. These results support the 

effectiveness of the proposed approach in providing a reliable and automated solution for brain tumor segmentation in 

clinical settings. 

Figure 5 presents qualitative results from a random test sample, illustrating the model’s segmentation performance. It 

includes the original input images, the corresponding ground truth masks highlighting the target regions, and the predicted 

masks generated by the model. Visual comparison between the true and predicted masks allows for an intuitive assessment 

of how accurately the model identifies and segments the regions of interest. 

 

 Fig. 5 Visual Results 
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In most instances in Figure 5, the predicted masks appear to closely resemble the true masks in terms of shape, size, and 

location, suggesting that the model is performing well in identifying the target structures. There might be slight variations 

in boundary precision or small discrepancies, but overall, the visual comparison indicates effective segmentation by the 

model. 

Ultimately, Figure 5 provides a visual validation of the segmentation model's performance by showcasing its ability to 

accurately predict masks that closely align with the true, manually annotated masks across various input medical images.   

 

5.  CONCLUSION 

This study presented an automated framework for brain tumor segmentation using a U-Net-based CNN, specifically 

designed for biomedical image analysis. By leveraging MRI images, along with comprehensive preprocessing and data 

augmentation techniques, the model effectively learns to identify and delineate tumor regions. The use of standard 

evaluation metrics, including Dice, IoU, accuracy, and loss, demonstrates the model's strong performance. The proposed 

approach addresses the limitations of manual segmentation by offering a faster, more consistent, and objective alternative, 

which can assist radiologists in clinical decision-making and treatment planning. Overall, the results validate the potential 

of deep learning–based methods to enhance the accuracy and efficiency of brain tumor analysis. Future work may explore 

integrating multi-modal data, refining model architecture, and applying the framework to larger and more diverse datasets 

to further improve performance and generalizability. 
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